Chap I: Les transformations chimiques acide-base

I-Les réactions acide-base ou acidobasiques.

Ressource: Vidéo V01a

1°- Définitions des acides et des bases selon Brönsted.

Un acide est une espèce chimique capable de libérer un ion H^+ (proton). Acide = H^+ + nouvelle espèce chimique

Une base est une espèce chimique capable de capter un ion H⁺ (proton). Base + H⁺ = nouvelle espèce chimique

2°- Les couples acide/base.

En cédant un proton, l'acide forme une base et réciproquement. L'acide et la base sont dits <u>conjugués</u> et on parle de couple acide/base. Noté AH/A ou BH⁺/B

 \underline{Ex} : $CH_3CO_2H / CH_3CO_2^-$

Application:

Donner les bases conjuguées de HClO; H₃PO₄; H₃O⁺; NH₄⁺

Donner les acides conjugués de CO₃²⁻; HS⁻; HO⁻

À chaque couple acide/base est associée une **demi-équation** modélisant le passage de l'acide à sa base conjuguée et réciproquement.

$$AH = A^{-} + H^{+}$$
 ou $B + H^{+} = BH^{+}$

a-Les couples de l'eau.

L'eau appartient à 2 couples acide/base H₃O⁺/H₂O et H₂O/HO⁻. On dit que c'est une espèce *amphotère*, ou un *ampholyte*.

L'eau est l'acide du couple H₂O/HO⁻ auquel on associe la demi-équation :

 $H_2O = HO^- + H^+$

L'eau est la base du couple H_3O^+/H_2O auquel on associe la demi-équation :

 $H_3O^+ = H_2O + H^+$

Couple

perte H+

Acide / Base

L'ion hydroxyde HO est la base conjuguée de l'eau.

L'ion oxonium est l'acide conjuguée de l'eau

b-Les autres couples à connaître.

- acide carboxylique / ion carboxylate : RCO₂H(aq) / RCO₂(aq)
- ion ammonium / amine : RNH₃⁺(aq) / RNH₂(aq)
- acide carbonique / ion hydrogénocarbonate : CO₂, H₂O(aq) / HCO₃(aq)
- ion hydrogénocarbonate / ion carbonate : HCO₃⁻(aq) / CO₃²⁻(aq)

Où R représente une chaine carbonée

CO₂,H₂O s'écrit aussi H₂CO₃

Lien avec la structure des molécules organiques

Ressource: Vidéo V01b

La *représentation de Lewis des molécules*, permet de comprendre les propriétés acide – base des molécules organiques.

La différence d'électronégativité entre l'atome d'oxygène et l'atome d'hydrogène explique la fragilité de la liaison O-H et explique que l'atome d'hydrogène soit facilement capté par un doublet non liant d'une autre molécule, laissant le doublet d'électrons de la liaison à O en cas de rupture de cette liaison. Le doublet libre de l'azote est, lui, disponible pour capter un ion H^+ .

Acide	Base
Acide carboxylique R-COOH	Ion carboxylate R- <mark>COO</mark> -
R—с ОН	R—C
Ion ammonium R'-NH3 H R'N-H H	Amine R'-NH ₂ H R'NI

Lorsqu'un atome porte un électron en plus sur sa couche de valence, il prend une charge négative, réciproquement, s'il en porte un en moins, il porte alors une charge positive.

3°- Les réactions acidobasiques.

Une réaction acidobasique est une réaction au cours de laquelle il y a transfert d'ion hydrogène de l'acide AH d'un couple vers la base B d'un autre couple.

Soit 2 couples AH/A et BH+/B.

Lors du mélange de l'acide AH avec la base B, il se produit la réaction suivante : $AH + B \rightarrow A^{-} + BH^{+}$

Les réactions acidobasiques peuvent être totale ou non.

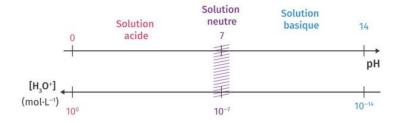
II. Lien entre acidité et pH.

Ressources: Vidéo V01c et TP 01 - pH et concentration en ions oxonium

Toute solution acide contient des ions oxonium H₃O⁺

En 1909, le chimiste danois Søren Sørensen (1868 – 1939) à l'idée de relier cette concentration à une échelle de pH qui va quantifier l'acidité de la solution.

Le **pH** (ou **p**otentiel **H**ydrogène) est une grandeur sans dimension (donc sans unité) variant de 0 à 14.


Il est défini par la relation suivante : $pH = -log(\frac{[H_3O^+]}{c^\circ})$ $pH = -log(\frac{[H_3O^+]}{c^\circ})$ $pH = -log(\frac{[H_3O^+]}{c^\circ})$ $pH = -log(\frac{[H_3O^+]}{c^\circ})$

 \mathbb{C}^0 est la concentration de référence, appelée concentration standard et exactement égale à 1 mol. \mathbb{L}^{-1}

La fonction réciproque de la fonction logarithme donne alors accès à la concentration en ion oxonium :

$$[H_3O^+] = c^{\circ} \times 10^{-pH}$$

Plus [H₃O⁺] est élevée plus le pH est *faible* et la solution *acide* et réciproquement.

Autoprotolyse de l'eau.

L'autoprotolyse de l'eau est la réaction de l'eau sur *elle-même*. C'est une transformation non totale qui aboutit à un équilibre chimique auquel correspond une <u>constante</u> d'équilibre *K_e appelée produit ionique* de l'eau.

Autoprotolyse de l'eau : $2 H_2 O \rightleftharpoons H_3 O^+ + HO^-$

Produit ionique de l'eau : $K_e = \frac{[H_3O^+]_f \cdot [HO^-]_f}{(c^\circ)^2}$

 $K_e = 10^{-14}$

Solution acide pH = 7 Solution basique pH > 7

L'ion H_3O^+ est majoritaire $[H_3O^+] > [OH^-]$ Solution basique pH > 7

L'ion OH- est majoritaire $[OH^-] > [OH^-]$ $[OH^-] > [OH^-]$