Chap VIII : Sens d'évolution spontané d'un système chimique

I. Notion d'équilibre chimique.

Ressources : Vidéos V08a

1°- Transformation non totale (ou limitée).

Lorsqu'une transformation n'est pas totale, l'avancement maximum n'est jamais atteint.

Une transformation est limitée lorsque l'avancement final de la réaction est inférieur à son avancement maximal.

Réaction totale $x^f = x_{max}$ Au moins un réactif a disparu à l'état finalRéaction limitée $x^f < x_{max}$ Il reste des 2 réactifs à l'état final

À l'état final il y a donc coexistence des réactifs et des produits dans le système.

Ceci n'est possible que dans le cas où *les produits de la réaction peuvent réagir entre eux* et reformer les réactifs de départ.

Pour rendre compte de ce phénomène, on remplace la flèche simple (\rightarrow) par une double flèche (\rightleftharpoons) dans les équations chimiques associées aux transformations limitées.

Une réaction totale ne peut se faire que dans un seul sens.

Une réaction <u>non totale (limitée)</u> peut se faire dans <u>les 2 sens</u> suivants les conditions imposées. (voir TP 08) Le sens dans lequel est écrit l'équation est appelé sens direct de la réaction, l'autre est appelé sens inverse.

$$a A(aq) + b B(aq) \xrightarrow{\text{sens direct}} c C(aq) + d D(aq)$$

2°- Taux d'avancement final

Pour comparer l'avancement de réactions non totales, on utilise le taux d'avancement.

Le taux d'avancement final τ (tau) d'une réaction est le rapport de l'avancement final sur l'avancement maximal :

$$\tau = \frac{x^f}{x_{max}}$$

 τ est sans unité, il peut s'exprimer en pourcentage

- Si $\tau = 1$, la transformation est considérée totale.
- Si τ < 1, la transformation est limitée (non totale)

Une réaction est très limitée (peu de produits formés) si τ est faible et peu limitée (presque totale) si τ est proche de 1.

3°- Équilibre chimique

Lorsqu'une transformation est non totale, le système atteint un état final, appelé état *d'équilibre*, dans lequel les *quantités de réactifs et de produits n'évoluent plus*.

À l'état microscopique, les chocs efficaces entre les particules ont toujours lieu. Ces chocs efficaces se produisent dans les 2 sens de la réaction, les réactions directe et inverses se faisant à la même vitesse. Les quantités de matières des espèces présentes n'évoluent plus, même si les réactions continuent à se faire.

L'équilibre chimique est un équilibre dynamique.

4°- Constante d'équilibre.

À l'état d'équilibre, les concentrations des réactifs et des produits ne sont pas indépendantes. Elles sont liées par une relation, caractéristique de la réaction chimique, égale à une constante appelée constante d'équilibre, notée K.

La constante d'équilibre, notée K, est un nombre sans dimension qui caractérise le système chimique dans son état final.

Pour une réaction chimique

$$\alpha A + \beta B \iff \gamma C + \delta D$$

La constante d'équilibre s'écrit :
$$K(T) = \frac{\left(\frac{[c]_f}{c^\circ}\right)^{\gamma} \times \left(\frac{[D]_f}{c^\circ}\right)^{\delta}}{\left(\frac{[A]_f}{c^\circ}\right)^{\alpha} \times \left(\frac{[B]_f}{c^\circ}\right)^{\beta}} \qquad \text{où } c^\circ = 1 \text{ mol.L}^{-1} \text{ est la concentration standard}$$

Les solides et les solvants n'interviennent pas dans la constante d'équilibre. (leur activité $\binom{|X|f}{f} = 1$)

Une constante d'équilibre :

- dépend de *la température*
- dépend de *la réaction chimique*.
- ne dépend pas des concentrations initiales (voir TP 08)

Remarques:

- Les c° peuvent se simplifier, mais pas toujours si la réaction fait intervenir un solide ou un solvant.
- Si $K > 10^4$ la réaction est considérée comme totale
- $K_{inverse} = \frac{1}{K_{direct}}$ donc si K < 10^{-4} la réaction est considérée comme totale dans le sens inverse.

II. Critère d'évolution spontané d'un système chimique siège d'une transformation non totale.

Ressources: Vidéos V08b

Pour déterminer dans quel sens va évoluer une transformation chimique non totale lors d'un mélange d'espèces chimique, on utilise le quotient de réaction.

1°- Quotient de réaction.

Le quotient de réaction, noté Q_r , est un nombre sans dimension qui caractérise le système chimique <u>dans un état</u> donné.

Pour une réaction chimique

$$\alpha A + \beta B \iff \gamma C + \delta D$$

Le quotient de réaction s'écrit :

$$\mathbf{Q_r} = \frac{\left(\frac{c}{c^{\circ}}\right)^{\gamma} \times \left(\frac{[D]}{c^{\circ}}\right)^{\delta}}{\left(\frac{[A]}{c^{\circ}}\right)^{\alpha} \times \left(\frac{[B]}{c^{\circ}}\right)^{\beta}} \quad \text{où } c^{\circ} = 1 \text{ mol.L}^{-1} \text{ est la concentration standard}$$

Les solides et les solvants n'interviennent pas dans le quotient de réaction. (leur activité $\binom{[X]_f}{c^2} = 1$)

Exemple: Le quotient de réaction Q, associé à l'équation est :

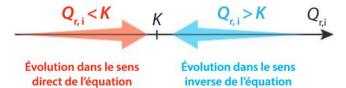
$$S_2O_3^{2-}(aq) + 2 H_3O^+(aq) \rightleftharpoons S(s) + SO_2(aq) + 3 H_2O(\ell)$$

Le soufre solide, S(s), et l'eau $H_2O(\ell)$ solvant n'interviennent pas dans l'expression du Q_r.

$$Q_{\rm r} = \frac{\frac{[SO_2]}{c^{\circ}}}{\frac{[S_2O_8^{2-}]}{c^{\circ}} \times \left(\frac{[H_3O^+]}{c^{\circ}}\right)^2} \quad \text{soit} \quad Q_r = \frac{[SO_2] \times (c^{\circ})^2}{[S_2O_8^{2-}] \times [H_3O^+]^2}$$

Lorsque le système chimique est dans son état d'équilibre, le quotient de réaction est égal à la constante d'équilibre.

$$Q_{r,eq} = K$$


2°- Prévision du sens d'évolution spontanée.

Tout système chimique, hors équilibre, évolue spontanément vers un état d'équilibre.

À une température donnée, la comparaison du quotient de réaction dans l'état initial, $Q_{r,i}$ avec la constante d'équilibre K permet de prévoir le sens d'évolution spontanée du système.

$$a A(aq) + b B(aq)$$
 sens direct $c C(aq) + d D(aq)$

On peut alors en déduire le sens d'évolution spontanée.

- Si $Q_{r,i} < K$ les espèces A et B sont consommés et C et D formées jusqu'à ce que le quotient de réaction devienne égal à K.
- Si $Q_{r,i} > K$ les espèces C et D sont consommés et A et B formées jusqu'à ce que le quotient de réaction devienne égal à K.