TP01-corr : Le pH d'une solution

« La relation entre la concentration en soluté acide apporté et le pH est-elle toujours vérifiée ? »

S'APPROPRIER

 1° - on sait que HCl (aq) + H₂O (l) → H₃O⁺ (aq) + Cl⁻ (aq) donc d'après la stœchiométrie de l'équation C_{HCl} = [H₃O⁺]

Pour la solution S_0 , $C_{HCl} = C_0 = 1,0 \text{ mol.L}^{-1} \text{ donc } [H_3O^+]_0 = 1,0 \text{ mol.L}^{-1}$

Sachant que la solution S_1 est obtenue par dilution d'un facteur 10 de la solution S_0 , on en déduit que $[H_30^+]_1 = \frac{[H_30^+]_0}{10}$ Soit $[H_30^+]_1 = 1,0.10^{-1}$ mol.L⁻¹

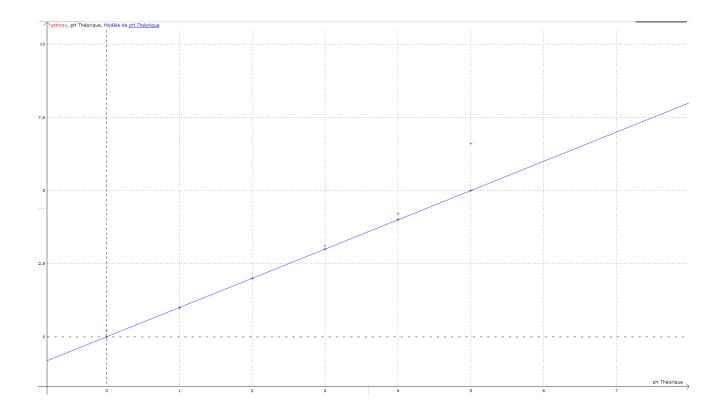
De même

$$\begin{array}{l} [H_3 O^+]_2 \! = 1,\! 0.10^{\text{-}2} \, \text{mol.L}^{\text{-}1} \\ [H_3 O^+]_3 \! = 1,\! 0.10^{\text{-}3} \, \text{mol.L}^{\text{-}1} \end{array}$$

- 2°- Pour réaliser une des solutions précédentes, il faut diluer 10 fois la solution précédente.
 - Versé de la solution S₀ dans un bécher de prélèvement.
 - Prélever la solution S_0 à l'aide de la <u>pipette jaugée de 5,0 mL</u> (attention à jeter le 1^{er} prélèvement qui sert à rincer la pipette)
 - Verser le volume prélevé dans une fiole jaugée de 50,0 mL.
 - Compléter la fiole au ¾ avec de l'eau distillée et agiter légèrement.
 - Compléter avec de l'eau distillée au trait de jauge EN TERMINANT AU COMPTE-GOUTTES.
 - Homogénéiser la solution en retournant 2 fois lentement la fiole jaugée.
- 3°- Les solutions S₄ et S₅ sont préparées sur le même principe que les solutions précédentes, donc

$$[H_3O^+]_4 = 1,0.10^{-4} \text{ mol.L}^{-1}$$

 $[H_3O^+]_5 = 1,0.10^{-5} \text{ mol.L}^{-1}$

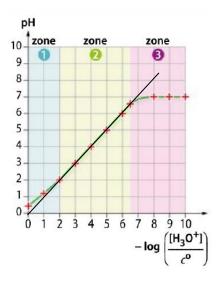

RÉALISER

Solutions	S_0	S_1	S_2	S_3	S ₄	S_5
[H ₃ O ⁺] (mol.L ⁻¹)	1,0	1,0.10-1	1,0.10 ⁻²	1,0.10 ⁻³	1,0.10 ⁻⁴	1,0.10 ⁻⁵
pH_{exp}	0,2	1,1	2,0	3,1	4,2	6,5
pH_{moy}	0,2	1,0	2,0	3,1	4,2	6,6
pH _{théorique}	0	1,0	2,0	3,0	4,0	6,0
z-score	1,7	0,35	0,05	0,45	1,8	16

Remarque : le s-score a été calculé avec les valeurs de pH à 2 décimales

ANALYSER - VALIDER

- 4°- Plus la concentration en ion oxonium est faible et plus le pH augmente.
- 5°- A l'aide du z-score, et en comparant le modèle et les points expérimentaux, on peut en déduire que la relation $pH = -log(\frac{C_{AH}}{C^{\circ}})$ n'est plus vérifiée pour les solutions trop diluée (à partir de 1,0.10⁻⁵ mol.L⁻¹)



Résultats attendus...

Cette courbe est appelée <u>diagramme de Flood.</u>

On y distingue trois zones :

- 1. Zone ① : pour de faibles dilutions, la relation testée n'est pas valide.
- 2. Zone 2 : pour des concentrations en ions oxonium apportés comprises entre $10^{\text{-2}}$ et $10^{\text{-6},5}$; la relation est valide.
- 3. Zone 3: pour de fortes dilutions, l'eau solvant impose son pH = 7.

